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A STOCHASTIC REPRESENTATION FOR THE PRINCIPAL EIGENVALUE
OF A SECOND-ORDER DIFFERENTIAL EQUATION+

Ioannis Karatzas

Abstract

Using ideas from stochastic control we derive a stochastic
representation for the smallest eigenvalue of a second-order
differential equation. As a side-result we solve an associated

stationary control problem in a very general setting.
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1. INTRODUCTION AND SUMMARY

In the present paper we obtain a stochastic representation

for the principal eigenvalue A* of the eigenvalue problem
z"(x) + 2(A-9(x))z(x) = 0, in IR (1)

with z(.) even and ¢(-) a positive, even, C1 and convex
function on the reals, growing like xzm, m>1 to infinity as
|x| > «. Under these assumptions on ¢(-) there exists a discrete
spectrum for problem (1) (see Titchmarsh [15], vol. 1 ad

*
Coddington and Levinson [2]), with eigenvalues 0 < A = AO < X1<

o s An < S An > ® as n + © and corresponding eigenfunctions
zn(x) € Lz(O,w), n € N, having exactly n zeros on (0,»). We

prove that A*  admits the representation

* 1 .
A" = - lim = In E exp{-I ¢ (x+w_)ds} (2)
T+ 0

for any x € R, where {wt; t > 0} is a Brownian Motion process
on an underlying probability space (R, ¥,P) and E denotes
expectation with respect to P.

The method proceeds by considering a stationary stochastic
control problem associated in some natural way with equation (1),
along with the corresponding family of finite-horizon optimization
problems. It is proven that A is the optimal asymptotic performance

rate for the statbnary control problem. A major step is then to

show that V(x,1t), the optimal expected performance for the control




problem on the finite time interval [0,T], satisfies the limiting

relationship

lim !Lﬁ%ll = A*
T+

, any x €Ik

(Theorem 1). Equation (2) follows from a Feynman-Kac-type stochastic
representation for V(x,T). On the other hand, a candidate for the
optimal law in the stationary problem is discerned from the corre-
sponding Bellman equation and its optimality against any admissible
nonanticipative law is established by means of the aforementioned
limiting relationship.

Donsker and Varadhan [3] and Holland [8,9] obtained different
representations for the smallest eigenvalue of second-order elliptinc
differential operators in bounded domains under natural or Dirichlet
boundary conditions. Holland {9}, in particular, establihed a
generalized Rayleigh-Ritz formula in this setting, using ideas from
stationary stochastic control. His method did not, however, invoke
the corresponding finite-horizon problems. Stationary control
problems were studied in some generality by Wonham [16] and Kushner
[11]. Both restricted attention to laws producing an ergodic
diffusion process. For an example of a stationary control problem
in which general nonanticipative laws are admitted, see Bened and

Karatzas [1].

2. THE STATIONARY CONTROL PROBLEM

Denote by z*(-) the corresponding to A* eigenfunction of

equation (1), normalized so that I (z*(x))zdx = 1. The change of




- *x 2 s -
variables z = exp(-v), v(:) an even, positive function on R,

yields the equation

o3 12 :
AT = > Vxx(x) 5 vx(x) + ¢(x), in R. (3)
N 12_- 12 o - A . .
ote that - 4" min(u-v_ + 7 u ), the minimum being achieved by
x ' %
u* = e It becomes transparent that (3) is the Bellman equation

for a stationary control problem - see Wonham [16] - to be intro-
duced in detail below.

Consider the space C[O,T] of real-valued, continuous functions
on [0,T], some T > 0, and let Z¢s 0 < t< T denote the -field
of subsets of C[0,T] generated by {x; xe€ C[0,T], s < t}.

Consider also the o-field 2 of subsets D of ([0,T] x C[0,T]
with the property that, for any 0 < t < T, the section Dt belongs
to Zes and that each x-section Dy, x € C[0,T] 1is Lebesgue-

measurable.

Definition 1: An admissible nonanticipative control law u is a

measurable function

u: ([OoT] o C[O’T]’ g) + (@R,B)

dx

¢ = U (x)dt + dwt

X0=X

QP
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have a unique (in the sense of the probability law) weak solution
{(xt,wt); 0 <t <T} on some probability space (Q,~9%,P:; 51),
for any x € R, with {wt; t > 0} an 4 -adapted Brownian

Motion process and

:T
u p it
Ey J0|ut(x)| dt < (5)
sup Elxtlp < @ (6)
0<t<T

holding for any p > 0. Let % denote the class of all admissible
nonanticipative control laws.

For instance, if u 1is bounded such a solution can be con-
structed via the Girsanov substitution of measures (see Liptser
and Shiryayev [12]). If u is a function of (t,xt) and satisfies
a local Lipschitz and a global linear growth condition in the space
variable then a solution of (4) exists in the strong Ito sense.

The optimal stationary control problem can now be formulated

as follows: choose a law u" € % for which the limit

T
st = Linp ey | 00D ¢} epha

T+
exists and does not exceed the average expected total cost

; T
COORE . F B RUC I NONEIRLT (7)

of starting at place x and exerting control law u for all

X €ER, u€e 2.




A natural subclass of % for this problem consists of the
markovian laws that give rise to an ergodic solution process (xt)
in (4). Those laws are of the form ut(x) = b(xt), b: R >R

measurable and such that Fu(m) < o, with
u &= y
F (x) = [ exp{2 I b(z)dzldy. (8)
- 00 0

It is proved in Gihman and Skorohod [7; §18] that the process (x:),
corresponding to such a law u, exists in the strong sense and
admits Fu(x)/Fu(w) as a (unique) invariant probability distribution

function, in the sense that

[ Po < yixd = 0artc0 = FPod; o<t T,y EeR (9)

T ©
1 u 1 u 5 '
T Iof(xt)dt ;—* Fu(m) J-m f(y) dF (y); a.s.l(P) and L'(E), (10)

uniformly on bounded x sets.

lim E[f(x:)lxg = x] = f £(y)dFU(y) (11)
t+o e

FY (=)

for any Borel measurable function f£(:) for which the integrals in

(10), (11) exist, and any x € R.

Definition 2: Let % be the class of laws of the form ut(x) =
b(x

¢) such that both FU(») < » and

I {6(x) + bE(x)}dF%(x) < (12)




are satisfied.

It is seen from (10) that the limit in the performance index

T
J(u) = 1im % E J 0 (x) + % u%(xu)}dt (7)"
0

To0

exists and is independent of the starting point x € R.

LEMMA 1: For the solution v(-) of equation (3) with v(0) = 0,

sgn v_(x) = sgn x (13)
X

v (x)~ [x|™, as x| > =, (14)

Proof: Consider d > 0 such that ¢(d) = A" and note that
(z*(x))" is negative on (0,d), positive on (d,»). Since z*'(0) =
%iﬂ (z*(x))' = 0, this implies (z*(x))' > 0, hence vx(x) > 0, on
(0,2). (13) follows by oddness of VX(X) in x, while (14) is a
consequence of equation (3) and the corresponding growth condition
on ¢(-), q.e.d.
Consider now a probability space (Q, %,P; 5@) and an
¥, -adapted Brownian Motion process {w,; t > 0} defined on it.

The stochastic differential equation

= -vx(Et)dt + dwt; t> 0
(15)
§0=X

has a strong solution on (Q, %P; 5{) because of (B); see

Proposition 2 below. The implicit minimization in (3) suggests that




(& t > 0} achieves the infimum of J(u) in (7)', u € #; in

t;
fact we have the following result:

PROPOSITION 1: The control law u:(x) = -vx(xt) is optimal in %

Proof: First it is checked that u'e ¥ In fact,
A b 3 y X % 2 4
F'(x) = I exp{-2 f vx(C)dC}dy = f (z (y))°dy, F (») =1
-0 0 -o00
and thus condition (12) follows from
[ ewaeten? « 3 et erBax -t (16)

which, in turn, is easily obtained from (1) with z,A replaced by
z*,k“ upon multiplying throughout by 2* and integrating over R.
Conditions (5) and (6) are also readily verifiable; see (24) below.

To prove optimality of u* in ¢, consider any law u € &
and apply Ito's rule to v(x:); taking equation (3) along with

conditions (14), (6) into account, one gets
u = u L2 mo *
Ev(xt) - v(x) + E I {op(x_) + z u (x )}ds > A t. s (17)
0 s s -

But 1lim Ev(xg) = (Fu(oo))'1 Im v(y)dF¥(y) < ®» by virtue of (11),

tro

so one obtains J(u) > A* upon dividing both sides of (17) by t

and passing to the limit as t + o, If u = u*, (17) becomes an

equality and therefore




T
Ju*) = linm } E jowcat) + vl =t (8)

Tao

* - . .
So u is optimal in ¥

LEMMA 2: P(|&.] < [x*w [, t > 0) = L.

Proof: An easy consequence of (13), Proposition 1 and the Ikeda-

Watanable comparison Theorem [10].

3. A FAMILY OF FINITE-HORIZON CONTROL PROBLEMS

Under the same assumptions and definitions as in Section 2,
consider the problem of finding the optimal law u*(x); e £ <%

in ¥ that minimizes the expected total cost

T
; - pu u 1 2 u
\ I(X9T)u) EX Jo{‘t’(xt) + 2 ut(x )}dt, 0 < T < T
k The Bellman equation for the value function V(x,7) on R x [0,T]
|
|

\ associated with this problem,

2
| V=iV -3 VEeem) =Vt min(, ¢ 5 + 0093 (x,T) €ERX (0,T] (19)

V(x,0) = 0 ; X€E R, (20)

has a unique classical solution which is CZ’1 in R x (0,T],

\ continuous on Rx [0,T] and satisfies a polynomial growth

condition in the space variable; see Fleming [4]. It is easily

checked that V(x,t) is an (achievable) lower bound on I(x,T;u) '




and that it is even and convex in x for any T € [0,T] (for the first claim,
apply Ito's rule to V(xg,T—t), u € %; symmetry follows from uniqueness and
the fact that W(x,T) = V(-x,T) is also a solution to (19), (20);
for convexity, see Fleming and Rishel [6], Ex. VI. 9). The
minimization in (19) is achieved for u = -Vx, a fact suggesting
that the infimum of I(x,T;u) 1is achieved by the process

{nz; 0 <t < 1} defined through

T €
dnt -Vx(nt,T-t)dt + dwt, < £'< %

o2 (21)
nO =X

and that the optimal control law in % for the problems on [0,T]

is G,(x) 2 -V _(x.,T-t); 0 €t < T, x € C[0,T].

PROPOSITION 2: The stochastic differential equation (21) is strongly

solvable on the probability space (, %,P; 52).

Proof: The symmetry and convexity properties of V(x,T) suggest

that
VX(X,T) >0, on xs 0. . (22)

In what follows we adapt an argument of Fleming [5]. Consider the
expanding sequence of intervals Gn = (-n,n) and the corresponding
sequence of functions Bh € Cm®); o S By ¢ E, Bn(x) =1 in Gn’

Bn(x) =0 in G The functions fn(x,T) = -Vx(x,T)Bn(x) satisfy

n+l"
both a Lip and a linear growth condition in x, hence the process
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T T
dnt’n = fn(n ’n)T't)dt & dwt; 0 f t f 1
T
noyn a x € Gn,

is well defined in the Ito sense, for all sufficiently large n € N.

T,m ,n
W E R, RS o T, where

Besides, if m < n, then ¢ ¢

o

-
)

i T
inf{t < %; lnt’ > n}

]

T, Inz’nl < m, all @<t <

Denote by T_ the a.s. limit of the increasing sequence T and

. T T,n
= ’
define Ny Ny

that nz is defined on the whole of [0,7T], i.e. that T =T, a.s.
It is easily seen from (22) that the process q:’n = (nz’n)2

for n large enough and O < t < T _. We prove

+T-1t, 0<t<T is a nonnegative supermartingale. Therefore,

P(T_ < t) < P( sup q°'™ > n?) < 5E%E >0 as n + ®
e T T0cs<t © s

any 0 < t < 1. Consequently, T = T, a.s.(P); Q.E.D.

<]

4. ASYMPTOTIC BEHAVIOUR OF THE VALUE FUNCTION

In this section we establish the main result of the paper,
Theorem 1, which gives an asymptotic relationship between the
optimal expected performance V(x,T) on [0,T] and the optimal

®
steady-state performance rate A . This relationship is used to

establish the stochastic representation (2) for % (Theorem 2) and
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to prove the optimality in % of the law u* for the stationary

problem (Theorem 3).

LEMMA 3: V(x,T) < v(x) + A*t; (x,7T) € R x [0,T), any T > 0.

Proof: The stationary optimal law u:(x) = -vx(xt) is suboptimal

for the finite-horizon problem; we have therefore from equation (19):

Voo % Vxx + % B vax + ¢(x); (x,T) €ER x (0,T].

Consequently, the function

1 Wix,T) & vix) + A*T - v(x,1)

\ satisfies the differential inequality

1 v
’ W IW - v (x,T) €R X (0,T]

\ : along with the initial condition W(x,0) = v(x); x € R.

| An application of Ito's rule to W(&t,T-t) gives the stochastic
differential inequality dW(Et,T-t) < Wx(Et,T-t)dwt, which implies
that {W(Et,T-t); 0 <t< T} is a supermartinglae since, due to

|
[ the polynomial growth condition of Wx in x and Lemma 2, the
‘ process

\

t ]
IOWX(ES,T‘s)dws; 0gtex




g
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is a square-integrable martingale.

Introduce the sequence of stopping times

T, = inf{@ < t < 73 IEtl < n}
(23)

=X 3 I | «n, a3 0=t < 1,

wl

An application of Ito's rule to Eiz, £ > 1 an integer, gives
2% 2(2-1) B " 2L~-1
d&t 1€t [(22-1) Zétvx(Et)]dt * 22&t dwt.

It is easy to check that for each & > 1 there exists a, > 0 such
that sz(z'l)[(ZE-l) - vax(x)] < ay, x € R. So the process
E%z +a,(T-t); 0 <t < T is a nonnegative supermartingale and

consequently, for any & > 1:

sup Eﬁiz < x2t o a,T (24)
0<t<T
| x2+azt
P(T_. < t) = P( sup |& >n) < —s7—0 . (25)
n OfthI t - nZz

Therefore, T_ » T, a.s. as n + », and

n

W(x,T) > EW(ﬁTn,T-Tn) 5= EW(E.,0) = Ev(E,) > O,

because the family of random variables W(ﬁt,t-t); O st< T} is

2

k
W S

uniformly integrable: sup EWZ(Et,t—t) < Const(t+ sup E§
O<t<t O<t<t

by (24), some k > 1. Q.E.D.
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PROPOSITION 3: Vx(lxl,T) < vx(lxl); (x,T) €R % [0,T], any T > 0.

Proof: It is readily verified from equations (3), (19) by

differentiation that the function:
M(x,T) & v.(x) - V_(x,T)
’ X X ’
satisfies the equation:

1
Mo 2z M -2 M -V M (x;%) €ER* (0,7}

along with the initial condition:

M(x,0) vx(x); x € R.

Note also that:

M(0,T) 0; 0 <t < Ty

It follows by Ito's rule that

t t
d M(Ct,T-t)-exp{ Iovxx(ﬁs,T-s) = exp{[ovn(is,T-s)d%Mx(Et,T-t)dwt. (26)

Take x > 0; the result follows by symmetry for x < 0 while it is
obvious for x = 0. By the same argument as in Lemma 3, the

integral of the right hand side of (26) over [0,t] is a square- |

integrable martingale on 0 < t < T, so that
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R
vx(x) - Vx(x,‘t) = E vx(ﬁR)-exp - JOVXX(Et,T-t)d} 27

where

R=infl0 <t <t & =)

=T, if £, >0 forall 0 <t <« 7,

The result follows from (27).

COROLLARY 1: P(|E,] < Ing| < |x#w.]; 0<t<T) =1,

Follows from the Ikeda-Watanable comparison Theorem {10}, along with

equations (15) and (21).

COROLLARY 2: 1im Vx(x,T) = vx(x), uniformly on bounded x-sets.

T>o00

Proof: From (27) we get for x > 0:
0 2 vy(x) - Vy(x,T) < Bv, (Gp) = [{R;T}Vx(gt)dp'
Due to Corollary 1:
’

PR=1) < POxw, >0, all 0ct<t) =220 140 as 15

uniformly on bounded x-sets (¢(:) is the cummilative normal distribution

i

function). On the other hand, we get from (11), (16) that

il




IS Y
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2

1lim va

2 % *
G = [ matoniy <ot
T>o0 -0
therefore %uB Evi(&t) < ¢ < », which proves uniform integrability
2
of the family {vx(ET); T > 0}, hence uniform absolute continuity,

hence the result.
REMARK: Note that

d|€t| » -vx(litl)dt + dw, + e,
(28)

lggl = Ix|

where &, is an increasing process that off {t,it = 0} (the

local time spent by the & _  process at zero), and

‘;t = I sgn & _dw_ is a new Brownian Motion on (2, #,P; %).
0 s s t
For a discussion of equation of the form (28) see Gihman and
Skorohod [7, §23] as well as McKean [13;§883.8, 3.9]. Application
of the generalized I1to formula (Meyer [14, p. 365]) to

M(1E,1,T-t) yields

M(|E,|,T-t) = Vi, (|8 |, T-tIM(E|,T-t)dt + M ([&,],T-t)dry + M (JE [, T-t)dw,

L V)O((lgtl ;T't)M(lgtl )T't)dt + Mx(|€t| ,T't)dW ’

because Mx(IE T-t) = 0 on {t;Et = 0}, i.e. where dzt £ 0.

<l
A new application of It0's rule gives (26) with &  replaced by

|£t|, so finally if
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R, = inf{t ¢ s < 15 k. = 8}
= %, if & #9 forall t<s < ¥,
we get
Rt
Ve lEel) - V (JE,],T-t) = E vx(|e;Rt|)-exp -It Ve 8], T-5)dsp [ Z, | . 27"
THEOREM 1: 1im YLE%II = A*, uniformly on bounded x-sets.

T>o00

Proof: By Corollary 1 and convexity of ¢,V in x:

T

T
UCURE B ROCHIEER GRS [ 0Ey « §vie e

Therefore,

T 7
1 1 .2 1 2 2
s E j0{¢ (Et) + 7 Vx(gt) dt - 7T IOE{Vx(gt) - Vx(gt,'t’t)}dt

(29)
< Kg%llf.k*+-!g9-.

The first term on the left hand side of (29) converges to A" as

T + », uniformly on bounded x-sets. For the integrand of the second

term we have the estimate

FEV2E - VG, 0] < Elv, 18 )v, (e 1)1 [{Rtﬂ}vxclztl)vxtlctndp, (30)

|
|
|
|

. A T
i ’_.,,:.‘_ Pamiiod
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where Proposition 3, relation (27)' and the convexity of V(-,T)
have been taken into account. Splitting the integral in (30) over
the events {Tn = 1} and {Tn < t), Tn as in (23), we get the

estimate

: = = +
e r = R =0 [ vdud v s,

Now

s
DI =R, % 1)+ P(Iitl e e Itvx(liul)du >0,
IESI on el t<s<1)

<P +wg -w >0, all t<s<T)=20@0-t) YY) 1< men-)

Therefore,

T
1E fo{vi(at) - VA&, t-t)}at < const.tV/Zp2mL
(31)

1 T
: I{an}['f Iovx(lgtl)dt]"x(lﬁtl)dP.

For the choice T = n4m+3 the first term on the right hand side

of (31) tends to zero as n + », while (25" with & = 2(m+l1l) gives
P(Tn < n4m+3) + 0 as n =+ «, uniformly on bounded x-sets. On the

other hand, the family of random variables

1
1 : : :
{7 fovx(letl)dt-vx(lﬁ.rl); T > 0} is uniformly integrable;




|
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indeed, we have by the Cauchy inequality:

2
T T
2 2
:—2 Elvx(IETI)Iva(Iitl)dﬂ < % EIOVX(IEtI)dt-va(Iﬁtl) <ctco

where ¢ 1is an upper bound on sup Evi(&r) (Corollary 2).
>0

By uniform absolute continuity the second term on the right

land side of (31) also converges to zero as T = n4m+3 >

o  uni-
formly on bounded x-sets. Therefore, both left and right hand
sides of the double inequality (29) converge to Y as T LI

uniformly on bounded x-sets; Q.E.D.

EXAMPLE: 1In the case ¢(x) = xz, we have A* = 1/V2,

z(x) = const. exp(- X)),
2

T

v(x) = x3/VZ, V(x,7) = (a(1)x? + j a(s)ds)/vZ,
0

with a(t) = tan (t/2). The results of the present section

are readily verified.

*
THEOREM 2: The principal eigenvalue A of the eigenvalue problem

(1) admits the limiting-stochastic representation (2), uniformly

on bounded x-sets.

Proof: The change of variables m = exp(-V) transforms

equation (19) into the linear equation with potential term:
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=
1]
N =

W T ¢(x)m; (x,T) €ER % (0,T]

m(x,0) =

A
[

v X ER,
It is checked that
t
m(x+wt,T-t)-exp -I P(x+w _)ds|; 0 < t < T
0 5 e

is a square-integrable martingale, hence the so called Feynman-Kac

formula:

T
m(x,T) = E exp{}f0¢(x+ws)d%}

(2) follows from the latter and Theorem 1.

THEOREM 3: The control law u:(x) = -vx(xt); x € C[0,»), is optimal

in % for the stationary control problem.

Proof: Apply Itd's rule to V(xg,T-t), any u € % and take
expectations to obtain by virtue of conditions (5), (6) the
inequality
o AR W T N
Vix,?) < Ex Jo{¢(xt) t 3 ut(x )ldt.

Dividing by T and letting T + » we get

1i 1
b < ?%g'% E IO{¢(X:) + % u:(xu)}dt = J(u,x), any x € RR.

s

4

e ——y
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Since y Rl J(u*) the optimality of ut follows.
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